複素関数の具体例

§4.1 基本的例題

(1) $n \geq 0$ とするとき

$f(z) = (z - \alpha)^n \quad \alpha \in \mathbb{C}, \ n: 負数$

\[\oint_C f(z) \, dz = 0 \]

（ inversión 球面的圏で半径 r の円）

（i）$n = 0$ とするとき

$f(z)$ は すべての C で正則（$ecause \overline{\overline{z}} = z$ で存在しない。かつ、繰り返ししない）

（ii）$n = -1$ とするとき

\[f(z) = \frac{1}{z - \alpha} \quad \text{は} \quad z = \alpha \text{で正則で不能。} \]

"Euler の積分定理はつかわね！"

(iii) \(n \leq -2 \) のとき

\[m = -n \geq 2 \neq \varnothing \text{ および} \]

\[f(z) = (z - a)^n \frac{i}{(z - a)^m} \]

\[z = a + r e^{i\theta} \quad (0 \to 2\pi) \text{ とおければ} \]

\[
\oint_c f(z) \, dz = \int_0^{2\pi} \frac{i r e^{i\theta}}{r^m e^{im\theta}} \, dt \\
= \int_0^{2\pi} e^{i(1-m)\theta} \, dt \\
= i^{1-m} \left[\frac{e^{i(1-m)\theta}}{1-(1-m)} \right]_0^{2\pi} \\
= \frac{r^{1-m}}{1-m} \left(e^{2\pi i(1-m)} - 1 \right) \\
= 0.
\]

従って

\[
\oint_c (z - a)^n \, dz = \begin{cases}
2\pi i & (n = -1 \text{ のとき}) \\
0 & \text{それ以外}
\end{cases}
\]
積分路の変形

積円 \(C : \frac{x^2}{4} + y^2 = 1 \) に対して,

\[
\oint_C \frac{2z}{z^2 - 1} \, dz = ?
\]

正直にパラメータ表示で計算しようと思う方に,

\[\begin{align*}
x(t) &= 2 \cos t \\
y(t) &= \sin t
\end{align*}\]

\[t : 0 \to 2\pi \]

\[
\oint_C f(z) \, dz = \int_0^{2\pi} f(z(t)) \frac{dz}{dt} \, dt
\]

\[
= \int_0^{2\pi} \frac{2(\omega t + i\sin t)}{(2\cos t + i\sin t)^2 - 1} \cdot (-2\sin t + i\omega t) \, dt
\]

大変だね!!

まるで

\[
f(z) = \frac{2z}{z^2 - 1} = \frac{2z}{(z-1)(z+1)} = -\frac{1}{z-1} + \frac{1}{z+1}
\]

\[z = \pm 1 \] で収束

\[
\int \text{C}\left(\frac{x^2}{4} + y^2 = 1 \right)
\]

\(f(z) \)は Cの内部で正則びは余り
ユーシーの定理が使えないにちはCを変形

グリーンの定理の証明にと
\[\oint_C + \oint_{C^{-1}} = 0 \]

次の経路C'を考える

C'の内部領域「」は、C = 1と含まずに→正則

改めて経路を明示。

\[C' = C_1 + C_2^{-1} + C_3 + C_4^{-1} \]

すると、C'の内部で \(f(2) \) は正則

\[\oint_{C'} f(z)dz = 0 \iff \left(\oint_{C_1} + \oint_{C_2^{-1}} + \oint_{C_3} + \oint_{C_4^{-1}} \right) f(2)dz = 0 \]
ゆえに、
\[C = C_1 + C_3 \]

\[\oint_C f(z) \, dz = \oint_{C_1} f(z) \, dz + \oint_{C_3} f(z) \, dz \]
\[= -\oint_{C_2} f(z) \, dz - \oint_{C_4} f(z) \, dz \]
\[= \oint_{C_2} f(z) \, dz + \oint_{C_4} f(z) \, dz \]

(i) 第 1 項を計算

\[\oint_{C_2} f(z) \, dz = \oint_{C_2} \left(\frac{1}{z+1} + \frac{1}{z-1} \right) \, dz \]
\[= \oint_{C_2} \frac{1}{z+1} \, dz + \oint_{C_2} \frac{1}{z-1} \, dz \]

\[\text{C_2 の内部で } \frac{1}{z+1} \text{ は正則である。 \(\frac{1}{z-1} \) は} \]

\[\text{C_2 内で不連続。} \]
\[\text{ベッセルの定理より} \]
\[\oint_{C_2} \frac{1}{z-1} \, dz = 0 \]

\[\text{さらに、} \]
\[\oint_{C_2} \frac{1}{z+1} \, dz = 2\pi i \quad \left(\because \text{§9.1} \right) \]

結局
\[\oint_{C_2} f(z) \, dz = 2\pi i \]

(ii) 第 2 項

\[\text{同様 USED} \]
\[\oint_{C_4} f(z) \, dz = 2\pi i \]

以上より
\[\oint_C f(z) \, dz = 4\pi i \]
(注意)

(一般化)

\[f(z) \text{が} C \text{の内部} \]

以下の経路を考慮

下の経路と考察

\[C' = C + C_1^{-1} + C_2^{-1} + \cdots + C_n^{-1} \]

経路の発展

\[\oint_{C_1} f(z) \, dz = -\oint_{C_2} f(z) \, dz = \cdots = -\oint_{C_n} f(z) \, dz \]

\[\oint_{C} f(z) \, dz = \frac{1}{n} \sum_{i=1}^{n} \oint_{C_i} f(z) \, dz \]