光とスピン

総論

- 「光と磁気」から「光とスピン」へー

1. はじめに

特集の

ポイント

拙著「光と磁気」の初版¹⁾が1988年,改訂版²⁾が 13年後の2001年である。これらの書では、磁性体と いう物質中において、磁気が光現象に及ぼす効果を基礎 的に論じ、さらには、その応用にまで言及した。このコ ンセプトの延長におけるその後の発展は、いくつかの解 説に述べた^{3),4)}。また、近接場磁気光学および非線形磁 気光学については「新しい磁気と光の科学」に述べた⁵⁾。

最近になって、「光と磁気」は「光とスピン」と名前 を変えて、新たな飛躍の時期を迎えようとしている。こ の飛躍には、スピントロニクス、スピンダイナミクス、 超短パルス光制御技術など基礎研究の発展がベースに なっている。この小論では、はじめに、これまでの「光 と磁気」について復習した後、最近の「光とスピン」の 展開について述べたい。

2.「光と磁気」のこれまで

ここでは,主として拙著「光と磁気(改訂版)」に従っ て,これまでの「光と磁気」の関係についてまとめてお きたい。光と磁気のつながりには,磁気が光学現象に与 える効果である磁気光学効果と,光が磁気に与える効果 である光磁気効果とがあるが,これまでの研究は,どち らかというと前者,すなわち,磁気が光に与える効果に 重点が置かれていたといえよう。

2.1. 磁気が光学現象に与える効果

2.1.1. 磁気光学の基礎^{1)~5)}

磁気光学効果の代表格がファラデー効果,磁気カー効 果であるが,これらの効果は,磁化をもつ物質における 科学技術振興機構 佐藤 勝昭

光学遷移の円偏光選択則から生じる非相反の現象であ る。

現象論的には,磁化をもつ物質の左右円偏光に対する 屈折率の違いによって直線偏光の回転をもたらす磁気旋 光が生じ,左右円偏光に対する消光係数の違いによって 楕円性をもたらす磁気円二色性が生じる。屈折率の円偏 光による違いは,誘電率テンソルの非対角項の存在に よって説明される。

電子論的には,図1に示すように磁化された物質の電 子軌道間の光学遷移の選択則がもとになって,光の角運 動量(円偏光性のヘリシティ)が電子系の角運動量に伝 達され,励起状態のヘリシティがバーチャルに基底状態 に取り込まれ,誘電率の非対角成分が現れるとして説明 することができる。この場合,磁化,したがって,スピ ンはスピン軌道相互作用を経由して電子の軌道角運動量 に寄与すると考えるのである。

図1 電子の軌道運動と円偏光の選択則

さとう かつあき

磁気光学効果の舞台となる物質のサイズが,ナノス ケールになるとどのようなことが起きるであろうか。電 磁波の波長よりも十分に小さいサイズの構造をもつ媒質 に入射した電磁波は平均した誘電率と透磁率を感じる。 媒質が磁性体/貴金属の多層膜または貴金属/磁性体/ 貴金属サンドイッチ膜においては,それぞれの層が十分 厚ければ貴金属のバルクプラズモンのために誘電率の対 角成分が負から正に変化するとき磁気光学効果がエンハ ンスされる効果が現れることが,1980年代に明らかに された。

その後,原子層オーダーで制御された磁性体の超薄膜 を貴金属でサンドイッチした構造において新たな遷移が 生じることが見いだされ,さらに精密な実験によってこ の遷移が磁性体層厚に依存することが明らかになった。 サンドイッチ膜を周期的な人工格子構造とし,変調周期 を短くしていくと,新たなバンド構造が出現し,特有の 磁気光学スペクトルが観測される。一方,媒質が貴金属 微粒子の分散系であれば,微粒子の表面プラズモンによ る磁気光学効果のエンハンスが起きる。

最近,磁化が物質の対称性の変化をもたらし,それを 通じて非相反な方向二色性現象につながる間接的な磁気 光学効果も見いだされている⁶。

2.1.2. 磁気光学効果の応用

磁気光学効果は,(1)磁気計測・観測の手段,(2)光磁気アイソレーター,(3)光磁気記録の再生,(4)空間磁気光学変調器,(5)イメージングなどに応用されている。

計測・観測手段

磁気光学効果の時間応答は10⁻¹⁵ s以下と非常に早い。 それは、磁気光学効果が電子状態間のバーチャルな光学 遷移にもとづいているからである。その高速性を使っ て、超短パルス光照射による磁化の消失や、超短パルス 光による高速磁化反転の観測手段として使われている⁷⁾。 磁気光学効果は電子状態間の光学遷移の円偏光選択則か らもたらされていることから、電子状態のすぐれたプ ローブとなっている。磁性半導体の電子構造を探る手段 として、赤外・可視・紫外領域の磁気光学スペクトルが 有効であることは、第1世代の磁性半導体である CdCr₂Se₄、第2世代の磁性半導体であるCd_{1-x}Mn_xTe, 第3世代の磁性半導体 GaAs:Mn, TiO₂:Co, ZnTe:Crなど で実証されている。安藤氏は、最近多くの室温磁性半導 体の報告があるが,真に磁性半導体であるかどうかの判断基準として磁気円二色性 MCDを用いることを提唱している⁸⁾。

非線形磁気光学効果は、強い超短パルスレーザー励起 によって生成された高次の電気分極による高次光発生 が、磁化の影響を受ける効果である⁵⁰。主として、2次 高調波発生(SHG)が使われ、入射偏光に対し出射 SHG 光の偏光が磁化に応じて変化する非線形磁気カー 効果(NOMOKE)が観測されている。例えばFeは、縦カー 配置の線形磁気光学カー回転角はせいぜい0.1°と小さい が、非線形磁気カー回転は90°近い大きな値が報告され ている。非線形磁気光学効果は、反強磁性体においても 観測され、磁気点群を用いた理論解析が行われている。 (2)光磁気アイソレーター

磁気光学効果が最も実用されているのが,その非相反 性を用いて光を一方通行にする磁気光学アイソレーター である。偏光軸を45°傾けた2枚の偏光子で磁性ガーネッ ト結晶を挟み,円筒永久磁石の磁界中においたシンプル な構造ながら,光ファイバー通信において戻りビームの 半導体レーザーへの入射を抑えるために不可欠な光コン ポーネントとなっている。光多重通信における光ファイ バーアンプEDFAにも線路挿入型の光磁気アイソレー ターが使われている。このほか,光サーキュレーター, 可変光アッテネーター,光スイッチなどの光通信用にコ ンポーネントに活躍している。光磁気アイソレーターの 課題は,光集積回路への実装である。光多重通信用コン ポーネントへの実装を念頭に入れた超小型導波路型アイ ソレーターの研究が行われている⁹⁰。

(3) 光磁気記録の再生

1990年代に開発されマーケットに投入された光磁気 ディスク,ミニディスクは,磁性物理の粋を集めた先端 技術の塊ともいえるものであった。熱磁気記録された磁 気情報の再生には磁気光学効果が用いられた。記録密度 を上げるために直径数十 nmにまで小さくした記録マー クを(回折限界を超えて)読み出すために,磁気超解像 の技術が開発されGIGAMOという名称で市場に投入さ れた¹⁰⁾。さらに磁区拡大や磁壁移動を利用した再生技術 も開発されたが,コスト高となり,その地位をハードディ スク,携帯音楽プレーヤーなどに明け渡し,製造が中止 されてしまった。磁気テープの磁気情報を磁気光学膜に 転写して光磁気再生する研究は,いまも続けられている。 特集:光とスピン

(4) 空間光変調器

空間光変調器 (SLM) には通常液晶が用いられるが, 応答速度が遅く,分解能も上がらないという問題点を抱 えている。磁気光学空間光変調器 MOSLMは高速動作が 可能なことから,ホログラフィックメモリーや立体画像 ディスプレイなどの分野で期待が大きい¹¹⁾。磁界変調に 電流磁界を用いたものはすでに実用化されているが,電 力消費の問題があった。井上らは,磁性フォトニック結 晶を用いて大きな磁気回転角を得ることによって,低い 電流で変調できること,さらにピエゾ素子と組み合わせ ることによって電圧で制御できることを発表した。最 近,強誘電体との界面効果によって,可視域で透明な常 磁性物質を用いることが可能になり,新しい展望が開け つつある¹²⁾。詳細は,本誌の高木氏,井上氏による解説 「磁性フォトニック結晶を用いた磁気光学空間光変調器」 を参照されたい。

(5) イメージング

磁気光学効果は古くから磁区のイメージング手段とし て用いられてきた。また磁気記録の分野では,磁気ヘッ ド上の微細な磁気構造の観測にも使われて来た。さらに 紙幣の磁性インク・磁気カードなど磁気光学効果の小さ な磁性体の磁気状態の観測には磁性ガーネット薄膜など を介して磁気光学イメージングすることが行われてい る。同じ手法を超伝導体への磁束浸入の観測に用いるこ とができ,超伝導電流の大きさを見積もりイメージング することも可能になっている¹³⁾。面内磁化イメージング することも可能になっている¹³⁾。面内磁化イメージング の空間分解能はほぼ光の回折限界で決まるが,近接場光 を用いた磁気光学イメージングでは,回折限界以下の微 細構造を観測することができる¹⁴⁾。放射光によるX線磁 気円二色性 XMCDを利用した元素選択的な磁気光学イ メージングも行われている¹⁵⁾。

2.2. 光が磁気に及ぼす効果

2.2.1. 光磁気効果の基礎

光照射による磁性の変化を一般に光磁気効果(広義) というが,これには,狭義の光磁気効果(光誘起磁化, 光誘起初透磁率変化など)と,光の吸収による発熱に基 づく磁化の温度変化(正確には熱磁気効果)とが含まれ る。熱磁気効果にも,キュリー温度や補償温度での磁化 や保磁力の変化によるものと,磁化の向きの温度による 変化(温度誘起スピン再配列)とがある。 (1) 光誘起磁気効果

Siを添加したYIG 結晶の強磁性共鳴周波数が光照射に よって大きく変化する現象は1967 年に英国のTeale, Templeらによって発見された¹⁶⁾。この効果はその後オ ランダのEnzらによって詳細に研究され¹⁷⁾,磁性半導体 や他のフェライトにおいても光照射による磁気的性質の 変化が見いだされた。例えば、Si 添加 YIGにおいて77 K での光の照射によって,初透磁率が数秒の間に1/10 以 下に減少する。このほかにも,光誘導磁気異方性,光誘 導ひずみ,光誘導二色性などが報告されている。Co 添 加 (Y,Nd) IG 薄膜での光誘導磁気効果が直流磁界に依 存する現象も報告されている¹⁸。

これらの応答は数秒から数時間にわたる遅い現象であ る。動作原理としては、光照射による電荷移動型遷移に 伴う3d 遷移金属イオンの価数変化、光生成されたキャ リアのトラップ準位による捕捉と再解放、電子正孔対の 再結合などが考えられるが、いまだに完全な理解が得ら れていない。

(2) 光誘起磁化

ピックアップコイルを巻いた常磁性体に共鳴する波長 のパルスレーザーを照射すると、ピックアップコイルに 電圧パルスが誘起される。常磁性体としては、最初の実 験はルビーについて行われた¹⁹⁾。照射はルビーレーザー のR線を用いた。基底状態のスピン4 重項から最低の励 起状態である2 重項に光学遷移が起きるときのスピンの 変化によって磁化の変化が起きる。熱効果でないこと は、円偏光のヘリシティを右から左に変えたとき、コイ ルに誘起される電圧が反転することから確かめられる。 この効果は逆ファラデー効果とも呼ばれ、3d 遷移金属 イオンや希土類を含む酸化物、磁性半導体、希薄磁性半 導体、3d 遷移金属錯体などでも観測されている²⁰⁾。

宗片らは、磁性体超微粒子を分散したグラニュラー構 造をもつ物質に光を照射することにより、磁化を誘起す る実験結果を報告している。光励起によって電子・正孔 が母体物質に生成され、それらが微粒子の磁気モーメン トをそろえ合う交換相互作用の媒体となっていると考え られる²¹⁾。

(3) 光誘起スピン再配列

 $RCrO_3$ (希土類オーソクロマイト)は反強磁性体であ るが、不等価な4つのCrサイトを有し、4 副格子(sublattice)からなる複雑なスピン構造を有する。このうち の1つErCrO₃は,9.7 K以下で反強磁性体であるが,こ の温度以上ではキャント型の弱強磁性となる。4.2 Kに おいて,この物質のCrの配位子場遷移を共鳴的に励起 すると,光誘起スピン再配列相転移が起きる。磁気転移 が起きたことは、ストリークカメラによるスペクトル線 の分裂の変化を観測することにより明らかにされた²²⁾。

(4) 熱磁気効果

①温度誘起磁化反転効果

レーザー光照射によって,局所的にキュリー温度以上 に加熱すると磁化を失うが,照射を止めると反磁界に よって逆向きに磁化される。一方,フェリ磁性体の補償 温度付近では保磁力が大きくなっており,レーザー光照 射で補償温度以上にすると保磁力が低下し,冷却時に反 磁界によって逆向きに磁化される。これらは熱磁気効果 と呼ばれる。

②温度誘起スピン再配列効果

RFeO₃(希土類オーソフェライト)は、ある温度を境 にスピン再配列相転移を示すものがある。この現象を利 用したものに光モーターが知られている。これは、磁界 中においた希土類オーソフェライトなどに光照射する と、熱誘起スピン再配列により、磁化の方向が変化し、 磁界中でトルクが発生して回転するというものである²³⁾。

2.2.2. 光磁気効果の応用

純粋のフォトンモードでの光磁気効果は,これまでの ところ実用的な応用技術にはなっておらず,応用されて いるのは熱磁気効果のみである。特に,温度誘起磁化反 転現象は,キュリー温度記録,補償温度記録などの形で 光磁気記録に利用され,MOディスク,MDなどとして 実用化された。光磁気記録に用いられた技術や材料は, MO,MDが市場から消えた後も,Tb/in²を超える次世 代超高密度ハードディスクのための熱アシスト磁気記録 として利用されようとしている。温度誘起スピン再配列 の応用例としては,光モーターがあるが,実用にはなら なかった。ここでは,光磁気記録と熱アシスト磁気記録 について簡単に述べる。

(1) 光磁気記録²⁴⁾

光磁気ディスクやミニディスクにおける記録には, キュリー温度 Tcにおける磁化の消滅と,補償温度付近 での保磁力の変化が利用される。キュリー温度記録の場 合,レーザー光照射によりT_c以上に加熱された領域は 磁化を失うが、冷却の際、周囲からの反磁界を受けて、 周囲とは逆向きに磁化される。より安定に記録するた め、バイアス磁界が印加される。補償温度記録の場合、 補償温度 Θ_{comp} 付近で、保磁力 H_c が増大することを利用 する。 Θ_{comp} が室温付近にあると、レーザー照射によっ て H_c が減少し、バイアス磁界または周囲ビットからの反 磁界で反転が起きる。温度が下がると H_c が大きくなって 安定に存在する。実際の光磁気ディスクでは、キュリー 温度記録と、補償温度記録の要素をともに利用している。

MOディスクは、光変調記録なので、光の点滅によっ て形成される記録磁区は涙目型になる。困難であった重 ね書きは、T_cの異なる4層の交換結合多層膜を使った LIMDOW技術によって可能になった。MDは、磁界変 調記録なので重ね書きは容易である。磁界変調記録の記 録磁区は矢羽根型になる。

光磁気記録の高密度化のために、光誘起超解像技術に 加え、磁区拡大再生技術(MAMMOS)、および、磁壁 移動磁区拡大再生技術(DWDD)などが提案された。 MAMMOSでは、記録層と再生層がスイッチ層で分離さ れ、再生時の光照射で熱的に記録層から再生層への転写 が行われ転写磁区が拡大する。DWDDにおいても、記 録層と再生層の分離が行われており、光照射により再生 時のみ転写磁区の磁壁が熱的に移動して拡大し信号増大 に寄与する。光磁気記録は市場から姿を消してしまい、 せっかくの先端技術は日の目を見なかった。

(2) 熱アシスト磁気記録

ハードディスク媒体は、磁性微粒子の集合体である。 記録密度の増大に伴い微粒子のサイズが小さくなってい くと、磁気ヘッドによって記録された直後は、記録磁区 内のすべての粒子の磁化が記録磁界の方向に向いている が、時間とともに各粒の磁化がバラバラな方向に向いて いき、記録された情報が保てないという現象が起きてく る。この現象が起きるのは、粒子の異方性磁気エネルギー $K_uV(K_u$ は単位体積当たりの磁気異方性エネルギー、V は粒子の体積)が小さくなったことによって、熱揺らぎ kTに打ち勝てなくなるためである。この現象は強磁性 粒子がランダム配向するので、超常磁性と呼んでいる。 ハードディスクの寿命の範囲でデータが安定であるため の条件は、 $\eta = K_uV/kT$ というパラメーターが60以上な ければならないとされている。粒径 dが小さくなると、 記録される粒子の体積 Vはほぼd³に比例して小さくな る。この減少を補うだけ、磁気異方性 K_u を増大できれ ば、超常磁性限界を伸ばすことができる。保磁力 H_c は $H_c=2K_u/M_s$ と書かれるから K_u を増大すると保磁力が増大 し、ヘッド磁界が高くなりすぎて記録できなくなる。か つて、超常磁性限界は、40 Gbits/in²とされていたが、 AFC (反強磁性結合)媒体の登場で、これをクリアした。 しかし記録密度が150 Gb/in²に達した前後から、長手記 録での高密度化の進展に急速に限界が見え始めてきたた め、これを救う技術として、長年にわたって研究されて きた垂直磁気記録技術が登場し、現在市販のハードディ スクはすべて垂直磁気記録となっている。

しかし, 垂直磁気記録によって超常磁性限界の到来を 多少遅らせることはできても, せいぜい1 TGb/in²まで であろうと考えられている。保磁力を大きくすれば安定 性が向上することは確実であるが, ヘッドでの記録能力 の問題を提起する。ヘッドの飽和磁束密度には限界があ るし, ヘッドの寸法の縮小にも限界がある。現行の磁気 ヘッドは理論限界の1/2 程度のところにまで到達してお り, 改善の余地はほとんど残されていない。

保磁力*H*_cの大きな媒体にどのようにして記録するの かという課題への回答の1つが熱を使うことである。室 温付近では大きな*H*_cを示すが温度上昇によって通常の 磁気ヘッドで記録できる程度に*H*_cが減少する媒体を用 いて,温度を上げて磁気記録し,再生はGMR磁気ヘッ ドを用いるのが熱アシスト磁気記録 HAMRの考えであ る。HAMRに用いる光ヘッドは,光磁気ディスクのヘッ ド(媒体との距離がmm)と異なって,媒体との距離が サブナノメータとなり,ビットサイズも微小(1 Tb/in² では10 nm×75 nm 程度)なので,近接場光を使う必要 があり,近接場発生素子 NFTが使われる。

熱アシスト記録の詳細は、本誌の野口氏の解説「HDD 用熱アシスト磁気記録ヘッド」を参照されたい。

3.「光とスピン」の最近の展開

3.1. 背景

これまでは,主として磁気光学効果が積極的に使われ ており,光磁気効果は,熱を介したものしか使われてこ なかった。もう一度前節のはじめに立ち戻ってみると, 磁気光学効果は,「光の角運動量(円偏光性のヘリシティ) が電子系の角運動量に伝達される」と考えるのであるか ら,当然,光のスピンが電子のスピンに変換されるフォ トンモードの「光磁気効果」が期待されるのである。前 節に述べた光誘起磁化はその1つの現れであるが、磁化 反転や磁気相転移を伴うような大きな効果としての観測 はなかった。フォトンモードの光磁気効果は最近、スピ ントロニクス、スピンダイナミクス、超短パルス光制御 技術など基礎研究の発展がベースになって、新しい展開 を見せつつある。最近のスピントロニクスの進展は、ナ ノ領域における光とスピンの関係に新たな展開をもたら してきた。スピン偏極した電子スピンの注入によって、 電子を受け取った磁性体の磁化が反転するSTT(スピン トランスファートルク)の現象が実験的に検証され、さ らにスピンRAMとして実用化されるという急進展が あった。このような背景のもとに、最近「光によるスピ ン制御」の研究が注目されているのである。

3.2. 逆ファラデー効果と光によるスピン波の励起

磁気光学効果の逆効果として逆ファラデー効果があ る。この効果は、円偏光が物質に照射されるとき、光の 進行方向に沿って、仮想的な磁界が誘起される現象で、 2.2.1.の(2)において、光誘起磁化として紹介した。 その磁界の方向は、円偏光のヘリシティによって反転す る。

キャント型の弱強磁性を示す希土類オーソフェライト に円偏光フェムト秒レーザー照射をすることによって, 数百 GHzのスピン歳差運動が誘起されることが報告さ れ、逆ファラデー効果によって説明された²⁵⁾。弱強磁性 体は自発磁化を有するため、歳差運動の周波数は数百 GHz 程度であるが、反強磁性体を使えば、互いに反平 行な副格子磁化をもち巨視的磁化がなく、2つの副格子 磁化の間の交換相互作用によりこれまでにない高速のス ピンダイナミクスが期待される。最近,反強磁性体 NiO において、円偏光フェムト秒レーザーにより非熱的に THz 帯のスピン歳差運動を誘起することに成功してい る²⁶⁾。さらに,光スポットの位置からスピン波が2 次元 的に伝搬していく様子が時間分解観測され、新しい概念 のTHzデバイスを拓くものと期待されている。詳細は、 本誌の佐藤琢哉氏の解説「光によるスピン波の生成と伝 播」を参照されたい。

3.3. 光誘起高速磁化反転現象

最近、光磁気記録材料であるGdFeCoの角運動量補償

点付近において,サブピコ秒の光パルスによって磁化反 転が生じ,左右円偏光に応じた記録ビットが形成される 現象が発見された。現象論的には,逆ファラデー効果に よって光のスピンに応じた有効磁界が発生し,それに よって磁化反転が起きるという新しいタイプの光磁気効 果であると考えられた²⁷⁾。

また、GdFeCoにおいて、図2に示すような光誘起プ リセッショナルスイッチングが観測された²⁸⁾。このス イッチングは、直流外部磁場印加中において、磁化補償 温度を跨ぎ,角運動量補償温度付近へ高速加熱すること により実現する。磁化補償点を跨ぐことにより、正味の 磁化と外部印加磁場の関係が、平行から反平行へと反転 し、加熱後の冷却時定数に比べ十分短い時間で、磁化反 転トルクが誘起される。すなわち、正味の磁化に対し、 印加磁場方向が超高速反転したのと同等の効果が誘起さ れる。そして、トルクにより磁化反転が行われる際、高 y値, 高ダンピング特性を有するため, 磁化は歳差運動 を伴い高速に反転し、かつ揺り返しはすみやかに収束す ることとなる。比較的低い照射エネルギー (0.9 mJ/ cm²)においては、初期状態へ回復するが、上記条件を 満たす高エネルギー照射 (3.3 mJ/cm²) においては, 照射後急峻な減磁を生じた後歳差運動を開始、最初の回 転において約6 ps 以内に磁化の膜面垂直成分の符号が 反転し、約50 psで反転状態に達した後、高い減衰振動 を数回繰り返し約200 ps程度で収束する。熱エネルギー は、磁化反転トルクの誘起と高速磁化応答温度への移行 にのみ利用され,磁化反転自体は歳差運動を利用するた め一桁以上の高速化が実現したと考えられ、超高速磁気 記録技術として注目される。

最近, X線自由レーザーのフェムト秒X線パルスと パルスレーザー光とを組み合わせたポンププローブ時間 分解実験で,フェリ磁性体 GdFeにおいて反強磁性結合 しているGdの副格子磁化とFeCoの副格子磁化を元素選 択的に観測し,両者の時間ダイナミクスが異なり,サブ ピコ領域で一時的に強磁性結合していることが見いださ れた²⁹⁾ (図3)。

3.4. スピン流と光スピンホール効果

スピントロニクスの新展開として散逸のないスピン依 存電流であるスピン流がある。スピン軌道相互作用の大 きな金属や半導体に電界を印加すると、スピン流が電界 に垂直方向に生成されることが示唆され^{30),31)}、半導体 において磁気光学的に³²⁾、および電気的に³³⁾観測され た。この効果はスピンホール効果SHEと呼ばれる。また、 スピン流に対して、それに垂直な方向に通常の電流に変 換される逆スピンホール効果が見いだされ、現在ではス ピン流の検出法として確立している³⁴⁾。

最近,SHEの光子版である「光スピンホール効果 SHEL」が提唱されたが,それによると,スピン1の光 子は,スピン1/2の電荷と同じ働きをし,屈折率の勾配 が,電気ポテンシャルの働きをするとされる³⁵⁾。SHEL の結果,円偏光が全反射するとき反射光が横方向にシフ トする現象などとして現れることが実験的に検証されて いる³⁶⁾。この効果については,本誌の小野田氏による「光 の幾何学的ホール効果―その物理像と展望―」を参照さ れたい。

図2 超短パルス光照射による超高速プリセッショナルスイッチ ング過程計測

図3 XFELを用いて測定した GdFe における原子特定磁化ダイナ ミクス

3.5. 光クロスオーバー効果による強磁性の発現

遷移金属イオンを含む錯化合物においては、光によっ て低スピン状態と高スピン状態の転移を示すものが知ら れている。通常、局在電子系の遷移金属イオンのスピン は、なるべく大きな全スピン角運動量を持つように配置 する。これはHundの規則と呼ばれ、高スピン状態が実 現し、磁気モーメントが存在する。しかし、電子相関よ りも配位子場が強い場合、低スピン状態となり磁気モー メントが小さくなる。光照射によって、低スピン状態か ら, 高スピン状態へと変換する現象は, 光スピンクロス オーバーと呼ばれている。もし光スピンクロスオーバー 部位が無数に連結した3次元ネットワークをもつ結晶固 体の場合高スピン状態のサイト間で磁気秩序を形成し、 強磁性状態への転移が期待される。転移に要する時間は 数百フェムト秒~数ピコ秒と考えられている。錯体結晶 の光クロスオーバー強磁性については、本誌の所氏らに よる解説「スピンクロスオーバー光強磁性体」を参照さ

れたい。

3.6. 強相関電子系の光誘起反強磁性・強磁性転移

従来の磁気光学が電子のバーチャルな励起によって生 じているのに対し、光が電子の運動をリアルに引き起こ し、この電子の運動を通じてスピン系に影響を与える新 しい磁気光学が提案された。実際、ペロブスカイト型 Mn酸化物において、超短パルス光励起によって、反強 磁性絶縁体相から強磁性金属相への転移をポンププロー ブ法で観測している³⁷⁾。さらに、ペロブスカイト型 Co 酸化物において、光誘起によって、非磁性の低スピン状 態から、中間スピン状態、さらには強磁性の高スピン状 態への光クロスオーバー転移が見いだされている³⁸⁾。詳 細は本誌の石原氏による解説「光で作るスピンの塊」を 参照されたい。

3.7. スピン注入と磁気光学

非磁性半導体へのスピン注入・蓄積現象が磁気光学イ メージングを用いて行われ³²⁾,また、半導体 LEDから の発光の円偏光度を用いてスピン注入効率を見積もるな どの研究も行われた。また最近、スピン注入磁化反転に よる磁気カー回転を用いた空間光変調器(SLM)が発 表され³⁹⁾,3Dホログラフィック・ディスプレイのため の高速高精細 SLMとして注目されている。これについ ては、本誌の菊池氏らによる解説「スピン注入型空間光 変調器」を参照されたい。

4. おわりに

ここまで述べてきたように、「光とスピン」の現象の 基礎研究については、光ホール効果、スピン注入蓄積の 磁気光学的観測,光によるスピン波の励起と伝播、ねじ れ偏光パルスによるスピンの制御,超短パルス光による 超高速磁化反転、自由電子レーザーによる反強磁性結合 した磁気モーメントのダイナミクスの観測,逆ファラ デー効果などがある。「光とスピン」の材料としては、 磁気がもたらす対称性の変化から生じる非相反な方向二 色性現象、スピンクロスオーバー光強磁性体、反強磁性 体の非線形磁気光学効果、光が作るスピンの塊などがあ る。「光とスピン」で先端技術に結びつくものとしては、 スピン注入空間光変調素子、光アイソレーターの光集積 回路への導入、磁気光学空間光変調器・磁性フォトニッ ク結晶、熱アシストHDD,超高速光磁気記録などがある。

新しいフェーズを迎えた「光とスピン」、今後の展開 が楽しみである。

参考文献

- 1) 佐藤勝昭:「光と磁気」,朝倉書店 (1988)
- 2) 佐藤勝昭:「光と磁気(改訂版)」, 朝倉書店(2001)
- 3) 佐藤勝昭: "光と磁気のナノサイエンス", 日本磁気学会第161 回研究会テキスト,pp. 1-8 (2008)
- 4) 佐藤勝昭: "光と磁気を取り巻く最近の進展と将来展望", 光学, Vol. 42, No. 1, pp. 2-12 (2013)
- 5) 菅野暁,小島憲道,佐藤勝昭,對馬国郎編:「新しい磁気と光 の科学」,講談社サイエンティフィク, pp. 141-174およびpp. 205-228 (2001)
- 6) 有馬孝尚: "非相反な方向二色性・線二色性",日本磁気学会第161回研究会テキスト,pp. 9-18 (2008)
- 7) Th. Rasing, H. van der Berg, T. Gerrits, and J. Hohfield : " Ultrafast magnetization and switching dymanics," in "Spin dynamics in confined magnetic structures II," eds. B. Hillebrands, and K. Ounadjeta, Springer, pp. 214-251 (2002)
- 8) K. Ando : "Seeking room-temperature ferromagnetic semiconductors," Science, Vol. 312, pp. 883-1885 (2006)
- 9) 水本哲弥: "異種材料接合による光導波路への光アイソレーター集積",光学, Vol. 42, No. 1, pp. 32-34 (2013)
- M. Kaneko : "Magnetically induced superresolution," in "Magneto-optical recording materials," eds. R.J. Gambino, and T. Suzuki, IEEE Press, Chapter 9, pp. 350-384 (2000)
- W. E. Ross, J. P. Karins, T. R. Maki, J. R. Lucas, L. G. Kelly, N. Jacksen, J. Cho, D. N. Lambeth, T. Le, K. Mountfield, S. Santhanam, D. D. Stancil, M. H. Randles, J. B. Whitlock,

and D. J. Garrity : "Measured characteristics of the reflected magneto-optic spatial light modulator (R-MOSLMTM) device," Proc. SPIE, 2240, 292 (1994)

- 12) 高木宏幸,井上光輝: "磁気光学効果を用いた新しい空間光変 調器",光学, Vol. 42, No. 1, pp. 20-25 (2013)
- 石橋隆幸: "磁気光学顕微鏡における磁場分布の定量的観察と その高感度化",光学, Vol. 42, No. 1, pp. 13-19 (2013)
- 14) 佐藤勝昭,石橋隆幸: "近接場磁気光学顕微鏡",光技術コン タクト, Vol. 44, No. 2, pp. 18-27 (2006)
- 15) P. Fischer, T. Eimüller, G. Schütz, G. Denbeaux, A. Pearson, L. Johnson, D. Attwood, S. Tsunashima, M. Kumazawa, N. Takagi, M. Köhler, and G. Bayreuther : "Element-specific imaging of magnetic domains at 25 nm spatial resolution using soft x-ray microscopy," Rev. Sci. Instrum, Vol. 72, pp. 2322-2324 (2001)
- 16) R.W. Teale, and D.W. Temple : "Photomagnetic anneal, a new magneto-optic effect, in Si-doped yttrium iron garnet," Phys. Rev. Lett., Vol. 19, pp. 904-905 (1967)
- 17) U. Enz, and H. van der Heide : "Two new manifestations of the photomagnetic effect," Solid State Commun., Vol. 6, pp. 347-349 (1968)
- 18) 大森一稔,中川活二,伊藤彰義: "Co 添加 YNdIG 薄膜の光誘 導磁気効果の直流磁界依存性",日本応用磁気学会誌,Vol. 19, pp. 249-252 (1995)
- 19) T. Tamaki, and K. Tsushima : "Optically induced magnetization in ruby," J. Phys. Soc. Jpn., Vol. 45, pp. 122-127 (1978)
- 20) 高木芳弘, 嶽山正二郎, 足立智: "光による電子スピン配向と 磁気変調効果", 応用物理, Vol. 64, pp. 241-245 (1995)
- 21) S. Haneda, M. Yamaura, Y. Takatani, K. Hara, S. Harigae, and H. Munekata : "Preparation and characterization of Febased III-V diluted magnetic semiconductor (Ga, Fe)As," Jpn. J. Appl. Phys., Vol. 39, L9 (2000)
- 22) T. Tamaki, and K. Tsushima : "Time-resolved spectra of a laser-induced spin reorientation in $ErCrO_3$," J. Magn. Magn. Mater., Vol. 31, No. 34, pp. 571-572 (1983)
- 23) 玉城孝彦: "スピン再配列を用いた光磁気モータの試作",電子 情報通信学会論文誌, J60-C, pp. 251-252 (1977)
- 24) 佐藤勝昭, 片山利一, 深道和明, 阿部正紀, 五味学共著:「光磁 気ディスク材料」, 工業調査会, (1993)
- 25) A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th Rasing : "Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulse," Nature, Vol. 435, pp. 655-657 (2005)
- 26) T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B. A. Ivanov, F. Nori, and M. Fiebig : "Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light," Phys. Rev. Lett., Vol. 105, 077402-1-4 (2010)
- 27) C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A.

Tsukamoto, A. Itoh, and Th. Rasing : "All-optical magnetic recording with circularly polarized light," Phys. Rev. Lett., Vol. 99, pp. 047601-1-4 (2007)

- 28) A. Tsukamoto, T. Sato, S. Toriumi, and A. Itoh : "Precessional switching by ultrashort pulse laser: Beyond room temperature ferromagnetic resonance limit," J. Appl. Phys., Vol. 109, pp. 07D302-1-3 (2011)
- 29) I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, Th. Rasing, and A. V. Kimel : "Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins," Nature, Vol. 472, pp. 205-208 (2011)
- 30) S. Murakami, N. Nagaosa, and S.C. Zhang : "Dissipationless quantum spin current at room temperature," Science, Vol. 301,pp. 1348-1351 (2003)
- 31) J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald : "Universal intrinsic spin Hall effect," Phys. Rev. Lett., Vol. 92, 126603 (2004)
- 32) Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awaschalom : "Observation of the spin Hall effect in semiconductors," Science, Vol. 306, pp. 1910-1913 (2004)
- 33) J. Wunderlich, B. Kaetner, J. Simons, and T. Jungwirth : "Experimental observation of the spin-Hall effect in a twodimensional spin-orbit coupled semiconductor system," Phys. Rev. Lett., Vol. 94, pp. 047204-1-4 (2005)
- 34) E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara: "Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect," Appl. Phys. Lett., Vol. 88, pp. 182509-1-3 (2006)
- 35) M. Onoda, S. Murakami, and N. Nagaosa: "Hall effect of light," Phys. Rev. Lett., Vol. 93, pp. 083901-1-4 (2004)
- 36) O. Hosten, and P. Kwiat : "Observation of the spin Hall effect of light via weak measurement," Science, Vol. 319, pp. 787-790 (2008)
- 37) M. Matsubara, Y. Okimoto, T. Ogasawara, Y. Tomioka, H. Okamoto, and Y. Tokura : "Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite Gd0.55Sr0.45MnO3," Phys. Rev. Lett., Vol. 99, pp. 207401-1-4 (2007)
- 38) Y. Okimoto, T. Miyata, M. S. Endo, M. Kurashima, K. Onda, T. Ishikawa, S. Koshihara, M. Lorenc, E. Collet, H. Cailleau, and T. Arima : "Ultrafast spectral weight transfer in RBaCo2O6- δ (R=Sm, Gd, and Tb): Role of electronic correlation in a photoinduced phase transition," Phys. Rev. B, Vol. 84, 121102 (R) (2011)
- 39)町田賢司,青島賢一,久我淳,菊池宏,清水直樹:"トンネル 磁気抵抗効果を用いたスピン注入型空間光変調器の研究", NHK 技研 R&D, No. 138, pp. 51-60 (2013)